TRANSLATION THEOREM FOR DATABASE QUERIES
OVER A PARTIALLY ORDERED DOMAIN

B S KULPESHOV*, N Z DUSENOVA

International Information Technologies University
34 «A»/8 «A» Manas Str./Zhandosov Str., Almaty, Kazakhstan

ABSTRACT

In relational model of databases, the state of a database is understood as a finite set of relations between
elements. Names of relations and its arities are fixed and refer to as the scheme of a database. The separate
information stored in the relations of the given scheme, refers to as a state of a database. Though
relational databases have been thought up for finite data sets, it is frequently convenient to assume that
there is an infinite domain – for example, the integer or rational numbers – so elements of the data get out
of this domain.

The signature of a relational structure \(L \) is non-empty set with the mapping assigning to each
relational symbol in \(L \) the relation of the same arity over this set. Let \(M \) be an infinite structure of
signature \(L \). Here we consider partially ordered structures. This means that \(L \) includes a binary relational
symbol \(<\) of which the interpretation in \(M \) satisfies to axioms of the partial order. We fix the scheme of
database SC and enter the following notations:

\[
L_0 = \{<\}, \quad L' = L_0 \cup SC, \quad L'' = L_0 \cup SC.
\]

A query of a database can be formally determined as a mapping, which is accepted by the state of a
database and it makes a new relation of fixed arity over \(M \). We consider two languages for querying.
Queries of the first language are formulas of signature \(L' \) – we name them by limited. Queries of the
second language are formulas of signature \(L'' \) – we name them by expanded.

Here we prove the translation theorem for database queries over a partially ordered domain.

Keywords: database query, partially ordered domain, weak o-minimality

1 GENERAL

The notion of o-minimality have been appeared more than twenty years ago [1] and proved its usefulness
and importance. Since that time many generalizations were appeared, name only some of them: weak o-
minimality [2], [3], circular minimality [4], weak circular minimality [5], o-stability [6], [7]. It is naturally
to try generalizing the notion of o-minimality on partially ordered structures that was originally done in
[8]. A structure of the form \(\langle M, =, <, \ldots \rangle \), where \(\langle M, < \rangle \) is a partially ordered set, is called a partially
ordered structure. In every partially ordered structure that is not linearly ordered the relation of non-
comparability of elements \(\emptyset \) is appeared, i.e. \(x \emptyset y := \neg(x = y) \land \neg(x < y) \land \neg(x > y) \).

Any family of pairwise incomparable elements of a partially ordered structure is called an antichain.
We say that a partially ordered structure has the width \(\leq \lambda \) if any its antichain contains no more than \(\lambda \)
elements. A set \(A \subseteq M \) is convex if for all \(a, b \in A \) and \(c \in M \) whenever \(a < c < b \) we have \(c \in A \). In
particular, points and intervals are convex sets. Obviously, antichains are also convex sets.

Our lecture concerns the notion of weak partial quasi-o-minimality originally studied by K.Zh.
Kudaibergenov in [8]. A weakly p.q.o.-minimal structure is a partially ordered structure \(M = \langle M, =, <, \ldots \rangle \)
such that any definable (with parameters) subset of \(M \) is a finite union of convex sets and \(\emptyset \)-definable
sets in \(M \). A theory \(T \) is weakly p.q.o.-minimal if every its model is weakly p.q.o.-minimal. Here we
present a criterion for connectedness of the set of realizations of every complete 1-type over \(M \) where \(M \)

*Corresponding author e-mail b.kulpeshov@iitu.kz

Computer Modelling and Information Technologies
is a partially ordered structure of finite width. As corollary we receive reducibility of expanded queries to limited ones over a weakly $p.q.o.$-minimal domain having finite width.

We say that k-ary query Θ is locally generic over finite states if $\overline{a} \in \Theta$ if and only if $\varphi(\overline{a}) \in \Theta(\varphi(s))$ for any partial $<$-isomorphism $\varphi: X \to M$, where $X \subseteq M$, for any finite states over X and for any k-tuple \overline{a} in X.

We say that a complete theory T has the Isolation Property if there is a cardinal λ such that for any pseudo-finite set A and for any element \overline{a} of a model of the theory T there exists $A \subseteq A$ such that $[A_0]$ $< \lambda$ and $tp(\overline{a}/A_0)$ isolates $tp(\overline{a}/A)$.

A set $A \subseteq M$, where M is a partially ordered structure, is called connected if A is convex and for all $a,b \in A$ - $(a \land b)$.

Theorem 1. Let M be a partially ordered structure of finite width. Then M is weakly $p.q.o.$-minimal iff the set of realizations of every complete 1-type over M is connected in any elementary extension of M.

Theorem 2. [9] Suppose that the complete theory of a structure M has the Isolation Property. Then any expanded query being locally generic over finite states is equivalent to a limited query.

Theorem 3. Let T be a weakly $p.q.o.$-minimal theory of finite width. Then T has the Isolation Property.

The following corollary is the translation theorem for queries over a partial ordered domain:

Corollary 4. Let T be a weakly $p.q.o.$-minimal theory of finite width. Then any expanded query being locally generic over finite states is equivalent to a limited query.

References

[8] Kudaybergenov K Z 2013 Generalized o-minimality for partial order *Siberian Advances in Mathematics* 23(1) 47-60